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NASA TT F-10,273

DESIGN OF PINNED BLADES FOR VIBRATION

B. F. Shorr

ABSTRACT
Development of a general method for calculating the vi-
brations of twisted pinned blades under combined bending and
torsion. The analysis extends previous results obtained for

rigid blades.

In reference 1 consideration was given to the kinematics of pinned [292%
blades in the presence of structural clearance in the pinned Joint wifh 2
degrees of freedom and approximate estimates were obtained for the first form of
vibrations. In this article a general method for the calculation of combined
bending and torsional vibrations of t%isted pinned blades is presented. It is
an extension of an analogous method developed earlier for the rigidly mounted
blades (ref. 2).

" The principal design of a pinned blade is shown in figure 1. Subsequently
it 1s assumed that the hinge axis is directed parallel to the axis of the rgfgf.
Tre mass of the pin 1s negligibly small In comparison to the mass of the Zggi

blade. Vibrations occur at low amplitude, which enables us to use linearized

eqguations and to limit our considerations of the motion of the blade during

ndicate pagination in original foreign text.
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Figure 1. Schematic diagram of pinned blade.

rolling in the pinned joint without slippage (ref. 1). Under these conditions

the motion of the blade as a solid in the plane of the rotation of the rotor is

(

. N = ey L et
CTTTRYIT IR,

where 01 and Dy are

1)

wzles of rotation of the blade with respect to the pin of

the hinge and of the pin with respect to the disk, Z = z -2p, and p is the pin

radius.
Th

Gisk D in the deflected position are equal to (ref. 1)

. -
— A SN . . “~

Vo= =0T 2w), 2u=0, zp=-—120, rp=r,

}’D=-Q"-73- 2&=~Q, ;;‘-):O’ )"D_.)'C’

he coordinates of the contact points of the blade with pin B and the pin

(2)



vhere (fig. 2)

: 1’1 'Oi ) ’ 1.)2;‘ g (3)

are dimensionless parameters equal to the reciprocals of the respective clear-
ances in the pinned joint; in the general case 1 < Yl,2 § ®, [ggg
In the investigation of the lower forms of bending and torsional vibrations
of twisted blades it is generally,ﬁossible to neglect the effect of longitﬁdinal
inertia forces and flexure in the plane of greatest rigidity. Here the relation-

ships between the components of the elastic curvature in the lowest rigidity

<t

Figure 2. Diagram of pinned blade with two degrees of freedom in a

tilted position.
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M§ and tor-

plane y and torsion T along with bending moment in the same plane

»

sional moment Mz in accordance with the theory of twisted rods (refs. 2,3) are

of the following fornm
| (%)

e A
P E=lndng _T—“-.‘,‘”:?

yielding coefficients which are defined by the formu-

and 622 are
=015

waere 8., 612 .
lae, cited in reference 2, where the following notation was adepted: a.rl

aﬂT = —612, a, = 622 and nn = Xg'
Since the components of bending deformation Xg’ Xﬂ and torsion T are re-

lated to displacement components u, v and rotation & in the following manner

(5)

where the superscript designates derivatives along the z coordinate, then when

~ O and at boundary conditions in the pinned joint (see fig. 2) we have

xn
(6)

' : 1)



In the case of harmonic vibrations of the blade in the Centrifugal force
i
Trie e

, without taking into account the effect of the inertia of rotation with respect
\

to the x and y axes and eoriolis forces) the amplitudes of variable loads will

y

oe

(8)

wnere o is the density of the meterial of the blade;
p is cyclic freguency of vibrations,
w 1s angular velocity of rotation of the blade;

F is area;
the

Jp = JX + Jy is,polar moment of the inertia of the cross section.

The equation of interest 1s the equilibrium of the element of the blade,
linear with respect to the amplitudes of the variable rod components,and [295

displacements have the following form

Mg, M Py =0,

&

=g, M, —(PY =0 ()

where

My=li,cosa--Ji sing,

My=—li sina--M,cosa (20)

and PZ is centrifugal force of the part of the blade from the cross section z %o

the free end, equal to PZ = gﬂwePl, where



il ”‘E”’

TP = {rFdz.
' (11)

By introducing (8) into the equilibrium equations (9) and integrating,

taking into acc_ount the following boundary conditions at the free end of the

blade
M O=M (=M, (D)= {l)=M_()=0, (12)
we obtain
1! I
My==—0.p? { \ Fodzt+o.u¥r - P /-U—) dz,
X Q'lp .‘} :’ | £S ‘V) 4\ r
A ! '
My=0.2*{ { Fu d:‘-’——equf-gp‘x dz, (13)
- z
! )4
A — 2 Gls__ 20 —
M,=o.p ] Jjdz—om é\JJ J)bdz

By substituting expression (7) into (1%) and converting to moments M. and
we obtain the following system of integral equations which .describe the bend-

M
Z
ing and torsional vibrations of a twisted pin mounted blade with two degrees of

freedcm in the pinned Joint:

D — 62 B, )+ P20 — W,
P2 W z)+p‘ 3 3 <l)-l-)

where



-~ [ z oz ! z -
iz —n locsot LF { o cosedzitemna R0y singdst |
< i v..«....i‘)‘ 1 g/b ) LTt =g WJ 1 : /: maczyy,
i v o o - J YRy
. z oz [VINY] iz G0
- K : 1 z
{ . e S
P s v L b o cosadatsing s Pt e sy »2
Vi=—g, ;rco:,aJ = Srl;wscmh : s“mJ ey fesmadz ], (15)
F4 0 z Q

\
B

here Xgand T are expressed through M§ and MZ by equations (h).

For the specific case offélightly twisted blade (612 =0, 8, = (EJg)_l,
855 ='(GT)_1) with a stationary point hinge (p = 0, @, = 0) equations (1k) coin-
cide with the equation obtained earlier by I. A, Birger (ref. L).

Angles ®; and 9, are determined on the basis of the condition that the
moments of all forces acting on the blade with respect to points of contact in
the pinned joint are equal_fo zero. The variable loading moment (8) and con-

stant load qg = Qﬂngr7with respect to a random axis passing through point y¥,

are
z¥ normal to the plane vz, equal to
~

R ACS DR ACERIE (16)

s
AL L
LYy —

J
P

where the integration is conducted under the whole length of the blade L. The

mass o the pin is neglected.

By introducing expression (8) for % and expression (7) for v into equation

(16) we obtain



M= — o0 [P —2*8
(17)

are moments of inertia and static moments for the whole
These

where JA’ SA and JC’ SC
volume of the blade with respect to contact points A and C respectively.
the
moments are determinec 7 Tormulas
C(Fztbgydz, .
(18)

is equal to Plﬂ = f rF dz.

The quantity P
guan Y Re
L

‘Designating \

[291
(B, ==0; when « —
. _ (19)
A frVgcosaab%‘
< 0),

the blade (L = ~Zgs Zg

where the subscript "H' refers to the low point on

and taking into account the fact that

[ O _9_<1 __’_>\*L } ,

‘QJ%“E("_"*) ggx;COSQdZSE*.I L P
4 0% (8 ® )



we may write equation (17) in the form

M= — g0, [P (Ja=2%8 ) — oS ] —

i
<I)L+(1 — \.\r;' }-_

s

-_—

2.0, 100 (Jo—2*8¢)— W?riSel—+ p?

1 A
i. \ .r)(/ .L

(20)
—a? i \FL - y*Qsm?pl.‘z'
\ : ra

By introducing expressions for coordinates of the points of contact (2)

into equation (20) we find

f‘“"s.—"— — e PV = (r Sy Fon P —

— o2 (PP (U 1208 ¢) = 0?(r 1Sc -+ 20P; )]+

vty (1 _TANG o TA yee
_;_"/. ‘I:(‘)LT<1 _.__i>\;11:‘!__u}z (SR S 0'

>
Ty H I

7
A

2

<

-

p= =90, {7/, — 208 5 — W'reS 1 —

(21)
—2:0: 1P e — e {reSe+ov P ) -
1 2 E‘ T e\ .. Fe. yre
-7 [(DL+< - ‘L‘I_]——cﬂ—i ¥, =0.
i re/ 1 T
Let us denote the following explicit relationships
Sy—Se=2V, _
—_—7 i . 2
J i de=20(8,+S50) (22)
. — o [Py
rCSJ‘n =70 _QQ;U“,

where V, the volume of the whole blade, 1s equal to V = I F dz.

L

C~enez-ally.9 the mass of fhe blade located below point A‘(i.e.7 when r < rA)'

is neg.igibly small in comparison with the rest of the mass of the blade and

o/1 << 1. 1In this case ! ~ L and

\O



Buamsor,
’ » 2
‘prlC~Q.:(JA_ ( 3)
Zue= el Seam= s,
In this case the inner bending moment along the r = Ty and r = Ty /298
cross}éections according to (1L) will be equal %o
M= =00, (P 4 —or S ) — 1
6.0 T2 LA N W2 ; ; " .
P Ve T 28 e) = (ST 2P PO — T, ©(ak)

Vi — o (0T, 908 N S =9 W)
fie= =42, (P =208 ) — P (reS, — 2P ) —

=3 Pi

! -9 ' DT KAk
— ":‘,20_ ([)'J’C _U}erSC) T_p-'\_ﬂc —_—e c»

~a

where @ =§§,YA=‘1’ where a =0, z =0 and ¢, =9 ,‘i’C=‘l’g when a = 0,

If the bending rigidity of the tail end is significantly higher than the
rigidity of the fin, then assuming that when z < lO" quantity X§ = 0, we find
s

that operators @X(r) and‘ifx(r) in the random crossf:section of the tail end are

expressed through their values in the base cross section of the fin (on = ég,

Yoo =Y Vhena=0,z = 10) by the following formulas
o Ve
Qs (7)=‘*'.-.0':‘(1 ey ¥ 10

(25)

from wnich it follows that

10



T, - I \
‘P,iz‘*’/.‘z‘(l —o) e
' (26)

and énalog.ous expressions can be written for @C and &'C.
Comparing (24) with (21) and taking (26) into account, we find that condi-
tions “B= D = 0 may be represented in the form
My= —u?o;Bu=—P, 1, -
o (en)

Hig=~—a? (9Bt oBe)=—PFzilcr

wnere

(28)

hy=0vi0n
he=0(2o+ Ya2)s
o
P, =0,0° Py,

It can e seen from Figure 3 that hA =V, Vg and hC = Vo ~yp are equal to

the distances in the bent position between points of contact and points on the

axis of the blade located on the same radii.
By subtracting in equation (21) quantity MB from MD.or in

, when p 34 0 we obtain respectively

equation (27)

guantity MA from MC

" Laro Y Yo e T

610, 1028 4 0¥ (S, — 0,5y, P ) 152, {7°Se + (29)
- P “F(‘ o

+0?[Se—(1—0,5v9) Pyl =—=(p*- o) ,

u o o

L Me—3a ., ve—Uy
PyanAz b;, +PZJ 9 -
20 pas)
| (30)

=P, los10,5(v01— \’2‘?2)] .

11
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" Figure 3. TFormulation of bouﬁdary conditions in thevpin Joint.

Figure 4. Determination of the transverse force QA.
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It can be shown (ref. 1) that quantity

9=58-0,5 (vyo — Vo) (31)
determines the slope of line BD connecting points of contact in the / 300

deflected position, and conseguently equations (29) and (30) reflect the condi-

tion

TR (52)

i.e.,the_force of reaction R pésses through the points of contact (see fig. 2).
_For“calculation in the general case one can make use of equation (29) and
‘ cne of equations (21). In the specific case when the pin is stationary with re-
spect tQ the blade (@l = 0, Yi = ») only the second equation (21) is meaningful,

Trom which it follows that

PPEpsc— S { B + i";az‘). (33)

When the pin is immobile with respect to the disk (y2'= ®y @y = O),from_ﬁhe

first equation (21) it follows that

P — ‘ (34)

For the rigid blade the operators $=Y=0 and the system (21) may be reduced
by substitution of variables to the system of equations obtained in reference 1
for the pendulum form of oscillations (without taking into account the mass of

the fin).

13



1

th

Let us now consider the analysis of orthogonality conditions for the m
The orthogonality conditions for the displacements

i
fTorms of vibrations.

and nt“
within the framework of the considered theory for twisted rods has, according\tb

ks (35)

(ref. 3), the following form
/ M -L‘ v G)l; = (;'-);7;).

' v"~v'}+-/pg‘:’.’s:: -

R

e,
TRl o
v g T

[ L —

(35) by parts and taking into account the boundary conditions

Integrating
. a
of (6) and (12),in the case of,rigid tail section we obtain (x. = 0 wnen z < IO)

7 - -
""’y » 7 '—L,- r "g‘_;..f —-’.v . —
0y M eV A Y = G o — 2 00, =0, (36)
is
} . ~ b B .
where
i
Mo o= g2t L Fudat
/py_L.';.D ] ;4 “ Lwty
g
! !
1= —a, 00§ Fodit
T TRy T (37)
1
""P::C’_.S:’ “;])/:L'.’Z

displacements of

are the internal moments due to inertia loads caused by complete

the blade, and
(%8)

U

(K

points

are the moments of inertia loads with respect to the axes passing through

A and C parallel to the x axis respectively.

1L



Waen xy ~ 0, it follows from (%6) that /301

7
V(= Mpanlen— M,z Ydz— 1
j Rmln T eV pagt g) e T A g T T 4

. LanTin g .,".:..A:O'
A P (39)

1§

On the basis of expression (1L) one may write

Mp=pr0g, My =piig” ‘
| ~ (ko)
‘/Xﬂ;’ -;J/.'\Jﬂ i c:fy.‘x;lc’ .
where
| (¢ __k,)€—(<:.‘_8p1~—638’.12§,
e i O Yo (3 -
Wa=0,—g ol st (U280 = 0, — ('anzA - ?23119»%)’ ( l‘l)

DL N L, —~ T " .
SoTed = Co—(3:B e T %8 m0)-

Thus, the orthogonality condition becomes

L ~ ~
¢ v e N T . % P —
= Cenlen Ot 82— Qg — Vemee,=0. (L2)

io

The system of integral egquations (lLL) with additional boundary conditions

(21) and orthogonality conditions (42) may be solved by the method of succesive

approximations. The order of calculation of the ith approximation of the nth

form of vibrations is as follows. From the earlier found or preassigned values
o . th . . i-1 ,i-1 . 3
of moments of the (i-1) approximation Mgn B MZn , which satisfy the orthogon-

ality conditions for all of the previous forms through the use of formu]_.a (15)

o1 . . .
én , \yl 1 él l, \yl l_

we can find the values of the integral operators ¢ 5
En zZn zZn
order for the moments for the ith approximation and the corresponding values of

In

angles to satisfy orthogonality conditions we must determine them in the form

15



(43)

and

(LL)

where M_ , M are moments and ¢, ', o are thé angles of the th form of vi-
gm lm’ "2m

pA

brations which are considered to be known; B; are coefficients which are found
- . ‘s . 2 s iN2 1  _1i .
from orthogonality condltlops, th? values pni = (pn) and @ln, @En are sFlll

randon.

According to (ref. L) the following deformation components correspond to

moments in equation (43) , [ﬁgg
75 =001, (P B — @ Bua) -+ 80, (7], B — w*Bue) -
r—1
P = S (45)
+pr;£K1n — W Llyn + > ‘.5’{"/"”'

where
| 2 :' . -'—- ~ . — s \\—o— _y_‘ ~ ';"t
— Ry =0 Wi 0,0,, Ly=18, %7404,
S ~ A | s > T s T !
Ke=:090 10,9, Loz= 040, (L6)

i,

andé Xgm’ Tm are known components of deformation of the prec_eding mL'h form. By

substivating equation (45) into (n-1) orthogonality conditions



! ~
AR SN £
- fi VNl G [ o~
- J e i "f‘l’;n/ haded At Yia U S imYin
‘o \ =1
~ -1 \
- 7
— & i ANV —
Yom| a Tt V, Pmtem | =0,
m=1

are known quantities,we obtain

~ g jay
where ng) sz; QAm) Qcm) C'Dlm, (sz

14
~ o~ r—
~ly °©D.__ oD oDy
H il [t — 2 I PPN 2 2D o
I um B PP EMIE: ‘.‘2, (!7 w Uﬂ/} ;
4
g \
N wi—h
ST Nemxzn )

ol
st < En

:v o f—1 ra >
+Krm(})lzn )__wf."__[’(

. ~
AU 3 E 1 ) } i
— s — 5 T — S
Toovm / imttm T tm ™ @ zm/ dz ‘)nf‘i (bl" iy u7f-)
~
: {0 H (S P
— @ Ve \*.'Zrz ’/71'.‘2.37/_ 0.

where the following representation is observed

~ ~

1 P ~ e
-— - Glp e ()

Ny 011 YT Vit

~ ~
&7 o> 4 IS
N == 0 e =0 W,

(7)

(18)

(49)

and in view of orthogonality conditions of all (n-1) forms among themselves the

following is taken into account

7
By ~ - A~
\, o S
~ o ) o
o e o s,
AT VAN [SF1 gAY

n

i e fon A Oy

is (_'“'Zm/Ek’I‘l-’:m‘i;“L"”
&

v
i“
/'1 P
:I-’ e

as
N ) 5 CE
- @Em}\"/n + (‘T):.':r‘z\,T 5= ‘;\/7.’7-' e ‘;(_‘“""(D-'-”"
~ ~
. e s
L ’l“ Doplop=— "r\,‘/_m S-S

— DOznlyn

L7

(50)

(51)



From (48) we find the following expression for the coefficient B;:, /303

i""l".“' ’ (/Y1 e 47 ) L‘}
‘?"= piip:no —w’ L-v - nn (pni- mp1 — 3"'"1 - 3""‘) -

| — . A s (52)
i i - ?‘;.n (p:l?'aﬂ— "pamw? - ?mﬁ)' - . ' :
where ' - : 3
p’..=c J(Klnd)’_l_[(?md)i';l)dz'
! . ; ‘ 'S
B (KW — KoVl 2, ,
' ‘ lo : i
s [ '.
i' ?-,‘=C-ﬁKl..Bmdz, ‘mp2 =Cm,s‘ szBﬂdz, E
3 : o A !
| G A N .
E pm.lzc',g sz .ldzy ?m2= CmS KllnB-?d,z,v ; ' (53)
1' ’ Y 1o i .
<;' gml =cm‘b.4u' ‘ 3‘"?2 =cm(DCtm
‘ e ST e ——— ___..A_(“
and
L R T , S
‘ C: 5.( ‘Diﬂli'l_*'q’ T, )dz—(pzlm?lm'—d)Cm?mn % (5)4)
EL - ,'_\v~--- e LT il PR N o -..‘...,.....J R
By introducing (52) into expréssions for the moments (43) we obtain
Mine — L, (72,B s — @Buts— Bytt) — 2y (P, Bpia — ?Buts— By + (55)
+ p2 Ot — W1, "
M:n= _?1. (P“ pal —o?Ban— 8931)-—-92"(pn‘ pzz—“’ Bz — 7:2)+
| + PO — W, . ;
where , ' i
. . n—1 ‘ -1 /’
(Diu = d’!n + Z meMEuh ) WEn = Wﬁn T 2 ?’m‘l‘M Emy /
=] m-=1
o g (56)
0,,,.-.—_@”-{-2 BmoM 0 Won=-¥,, +2 3mw M 1, _
] R =1 («‘
Wi

18



- - and ' {‘

a—1 ) et

Bﬁl = Bpl + 2 gmleEﬂn_ szl = }: ;‘apl')‘hav
M=) Mo i
n—1 n—: i
B&{l— -l +2 BmlMFun Bul=2 ?Mhl‘w’,‘o :
| m=1 ; ( 57)
a1 i '
{ B?U =2 amvllwtm. B.n =2 f’m;l/"m- {g
i m=1 v o 4 'ms-l ;

(Formulae from B DE2’ §2,etc.,are analogous).

Apparently both the coefficients Bmp’ Smw’ Bm¢ and the corresponding func-

th

tions B , B 2 B¢z are the same for all approximations of the n

B
pe’ Pug’ Pg’
form. The moments Mén, Min'defined by equation (55) satisfy the orthogonality

. . 2 _1i i
conditions for all of the preceeding forms at any values of pni’ P15 and Pop
The quantity Pii is found from the simplest condition of the passed in- : [§Oh
tegral equality of the moments of the (i-l)th and ith approximations for which
the work of the loads of the (i-l)th and of the i°h approximation for displace-

ment of the (i-l)th approximation are equated, which gives

- e e oy

(58)

Using more complex conditions in this problem (for example,evaluation of
the weighted least square fit (ref. h))ypomplicates the solution practically
| without improving the éonvergenqe. | |
By substituting expression (55) for the moments into equation (58),we ar-

rive at the following equation which correlates duantities pii with ¢in;and $;n:

i =i
_ p2 :x (bln‘?ln + b2n72n)
i "’: - (d m‘hn + dzn?zn)

S U NSO |

(59)

PR
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where

- - e A —

al _; [ /{;-1 (Mé;l+w2q'i—l)+-rl—l (Ml—l.{_wzly‘l—l)] dz —

._? in l(Ml—-l_*_wQ\p‘l-—l) ?2,-'—1 (A/[l—1+w2[p‘l—l) :

L
i

__j'( /l-lq)’l 1+71-1¢'n—1)dz_? —1@0/—1_%—1(1,21"—-1,

= ,[[ 247" (Bir + 0 Bur) +77! (Bosy +?Ban)] dz —
—?,,. ’(Bver a4 0?Bui, ) —ob (Byai, ¢ 9Bty ©),
bi= 5 [ 75" (Bt 0#B) 4717 By + 02 Bu)] dz —
lo

— @l (B, a+97 Buta, ) — b (Bga, -+ w*Buz. ),

(60)

? ! .
) ’ dlln=’$‘(—7-£I;IBF€|+TL_1'Bp:I)dz_?M]BPU A‘_?z,. Bpﬂ.Cv

| z,.—'f( 1 BuatT,” 'B,m)dz 9118y, A=l B, c.

S PO

S —

q& ']
here i? 0’ Y* pgl A BP§2 A wgl A ng2 A B(pgl A Bcp§2 ) are values of the

corresponding functions at po:Lnt A and analogously @* etc. are their values at
pom'tjb. On the other hand, from the boundary conditions (21) and (29), taking

into account (23 ),’ it follows that (when wzaé 0)

‘?m(elqu f1)+‘?g,,(ezqnz—f2) q,,,‘b”‘ ‘I‘”—l

i1

?]n (glq’u' l) T ?én\g2q;‘l - 2) = (qnl+ 1) ‘I)Aa ’

; ) 2 '
i . (q2 —_ plli) -
; T N w? ]’

.,‘

(61)

where : ’ ' - /305

e e . e e ey

rﬁé;; QJ:,A" Ae2 =0, (J AT QQSA)o
| J1=0(r 484+, Pu)), © Ja=ereS,, : v
g &1= QsS4 82=10,7 4S¢, (62)

i_‘}l‘=Q‘f“ (O,SY‘PA."'SA)1 Iz2=QArA [(1 —0’5\'2) PXJI_SC}'

20



e

Having solved equation (6l) with respect to angles in and ﬁ;n'we find

B o DR
//'r’ : ‘PSn:T {q:i(gﬁq)iinl — e iﬂnl) -

:/ "‘lu[llg‘b +(g2+e2_f2)\114,7,1]+(11,+f2)‘1’ } | (‘6 )
: ! . 5

Co 951!::__— {‘I:.r(gx‘DA —e Vi)~ "
; —qyl4 o +(gx+ex_fx)w ]+(h +f1)\1’ ,:
where
" u —qt.,(eu,a — e —dy (et /i — g fa— e+ e

+0h4, —f_;fn)-

By substitution of (63) into. (59) we arrive at a cubical equation with re-

spect to p2,. Having found by the ordinary method its real loads (see for ex-
ni

ample (ref. 7)) and having determined the corresponding values of angles, we take
as the solution for further calculatlon that group of values of p2 3 mln’ ¢;n

-1l
for which the quantity (¢ln.-wln ) (¢2n ¢2n ) becomes the smallest.

In calculations it.is useful-to keep 4n mind that

(65)"

exgz 8182-—2(2’A(SA'—JAV)-——-QQT'AVJ

From the found values of p2., El. and 61' we determine moments M-  and M*
ni’ *ni 2n . En zn
‘using formulae (55) and angles ¢in and ¢;n from formulae (L4) and (52).
It is well known (ref. L) that the above presented simple iteration problem

converges only when the flexibility parameter of the blade v < 1. The flexibil-

ity parameter

(66)
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where w¥* is the least nonzero eigenvalue of the corresponding stability problem,

the equations for which are obtained from the equations of the previous problem

if one assumes in them that ;p2 = 0 and w2 = -wi,from whichl

P,

! 2y !

M£=w.q/£0 "

C Me—ow (67)

;! 8=w0‘1‘g| R )
where

I Yo=Y —(p:Bu1+¢;Bu),

under boundary conditions (w* £ 0, cp1=;é 0, cpzqéO) /306

Jotin=ty )

| Byt hgpy= =T, (68) :
from which
Cx () Ba—(fit kB L .
R 7 =Y — - L' . .
LT T (69)
The system of equations (67) is solved by means of a simple iteration
/‘ M=ol W, (70)
| M=l
where
A | . ' ’ T
/ .s'(_.lé—lMg—l +'TI—IM;-1)dZ i
! 2 __ lo ) }
l/ W=7 ’f (71)

(T e g

iy i

?

lApparently the given formulation of the stability problem has only & mathemati-
cal significance since in the case of real changes of the direction of longi-
tudinal forces the contact conditions in the hinge point would change.

i,
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Let us note that when 9 = 0]

‘j E&::WE.-——-E-‘:}—;—WA,\ . | ( 2)
; Baa + Bn ; A 7
and when @ = 0
W W 2§
[ =T Boch By G : (72')

For the calculation of wi,2-3 approximations are generally sufficient.
Knowing the'value of wi we find viand if v 2 1,for the ith approximation we

take

~

Y Pyl 1=1) . ”1 “’z' ~ o)
;ME'I—ME"—E(ME"'—ME:: ), ?ln=‘?ln-5(?{n—?in 1).

i
L

L S "

et

Mg s —e (Wl — M), e =tk —e (ke — 517, )

where M 5 EF ot

en zn’ P17 E%n are the quantities determineé above by means of'a sim-

ple iteration.
. . s . . n . .
€ is the coefficient which insures.coyvergence when v =2 1, which according to

(ref. 4) can be taken as equal to
‘// e=—"o . (1)

In order to improve the convergence and the uniformity of the process of
solution it is worthwhile to make use of formulae (73) and (74) also when v < 1.
When selecting the initial values for tAese quantities the following must be
kept in mind: since the first form of vibrations generally is close to the first

harmonic oscillation we may take Mgl = MMI’ i.e.

e

M= _q,g[pgdsm—mzam, +§%(pf“3m—m23mz)] g (75)

[

— - - S
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where Py and ¢2MI/¢1MI are the frequency and the ratio of angles for the first
L

= 0. The quantity

harmonic form, determined by solving system (21) when QL =Y
P is random. It may be taken to be such that Mﬁl = 1. In calculation of the
[307

second form we assume that
(76)

T .0 04 Orr o -0
M _ 0 .0 .
)," MW“—‘ME"I"@lMEh ‘?12_“.’(1)'1“{’?911»

T a0 0 4 (0 .
! Ma=Mz+4H8M,,, » 99, =93+ Bl9a1s

where MQ, Mg are some functions;
@l,‘¢g are the corresponding angles as will be shown below;

h Mgl’ le, P12 9oy Bre moments and angles during oscillations in accordance

with the first form and are considered to be known.
(77)

By orthogonalizing (76) to the first form we find

/ T - ' - -
?’? = -01:[15 ( —ng’il"i"‘u‘bzl) — 9P 4 — 5 (Dcx_ ] v
Mg, Mg using formulae (L).

where x_, T are expressed through
Sinee in the general caée the predominant deformation in the second form of

vibrations can be both the bending and torsional,it is worthwhile to evaluate in

the first approximation 2 values of Poys assuming:

a)‘ predominantwtorsional deformations
ffmg=o, 9‘1’-—--:93=0,'\,
/ M°=1—(Z—I°)2 ‘ (78)
S Ut | Y A
which satisfies conditions Mg(l) = 0 and e(to) = 0;
b)- predominaneybending deformation
(1 =2/ (1 —z2Jz%), '
_ = (79)

o Marz — Marz (1= 202%) (1 —20/12
¢ 2 (1 —20/2") (1 —2/1p

o M=o o
' oL



i

Mp satisfies boundary conditions
z% and insures that the following

The expression_for the moment e
Mp(l) ='Mg'(t) = 0. It changes sign when z =
equalities are fulfilled: Mﬁ = M, Mg = MCl' From formulae(27) it is apparent
= o1 - Assuming p << ! and expressing M., according to

that here ¢8 = 910 Po
=~ 20lPy, (Gutea)=Qul,

(30) as
MCI_MAl
(80)

we obtain
MO= MAX(I - Z/Z")-—{P:, (11 + ‘?21\—0.‘“1 Z (1 zll)z (1 —-z[z*) I
e ]

; 1—29/2‘
‘ . the
After the determination of,eigenvalue of p21 for each variation further

calculations of the second form are conducted on the basis of initial variation

in which the quantity Pgl had the smallest value
~(81)

In calculation of the third form we take

)
[ Mis= Mi+BiMa+ faMen
M~ and ®1, Pp we, take the same quantities as
The coefficients

w.tk a d\ar\ge Q

where for the values of Mg,
a
for the second form but correspondindly larger value of p21

ete,
Bl, 32 were determined from formula (77) -=in the latter casejquantities Cl

~

le, ete. for C2, @ o etc.,rgspectlvely
but as a result of assumptions which were taken as the basis of the method,cal-

Analogously one can assign initial ‘approximations for subsequent forms,(iOB
]

culations of higher forms are of limited practical significance
If by analogy with the previous calculations or on the basis of other con-

siderations the predominant nature of deformation of the second and of the third

form are known then the initial approximation is taken directly for the
25



appropriate variation. In calculation of wi for initial values one may also

WO . _ _ . eas _
take MT§ = MMI’ Mg = 0. For the stathnary blade MA = Mb = O,and the initial ap

proximation for M_ should be assigned in the form

g

R

where the power s is equal to fhe numbef of degrees of freedom in the’hinge
[(when s = 2,from.(82) it follows that Q, = 0, which corresponds to cond%ion (%0).
In other words,when w = O.the pin blade with 2 degrees of freedom behaves és a
beam with free ends]. For the second (first zero) form t = O and for the third
form t = 1. |

The proposed geﬁeral calculation method was programmed for the electronic
digital computer M20. Let us consider éertain numerical calculation methods
when certain simplifications are possible.

1. Blade with one degree of freedom in the pinned joint (for ﬁhe specific
case we assume that g, = 0, ¢ = ¢l). From (14) it follows thatl

| M= —g(p*B,— &*Bu)+ pPl; — Ty, , (83)
- Mz=p2®sz2‘P'z’ '

under boundary condition (3L4) and orthogonality condition

/f t ~ V V~ ‘ o o
; .j(—Qg,,,)(g,,—{-(I)mrﬂ)dz,-iI) 0,=0.

s b

(8k)
Since when ¢, = O for calculation of pii formula (59) becomes

R S A |

i 2___‘an—br_x?n : (85)
; Pu= I _qi o v

cll— n?n '

1
Subscript 1 of BP, Bw and other quantities was omitted here.
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by introducing (85) into expression (3L), written for the determination of 5;,

we shall obtain a quadratic equation with respect to a;:

AEGr-BEre=0 (86)
where
: Al =B, b~ (Boa By d,
| Bl=B,,0,— 0 (Baa+ Bo) ¢l + Bi=t bl —2T=1i (87)

S I — D=1l _  20i—1nf
C,‘--— DAn an w \IAn cn'

The sought value 5; gives that root of the equation (86) for which the

Lty (o i‘l)e.
quantity P, P, is minimal.

. . 2 -

2. Instead of determining the quantity P from the conditions of /309
integral closeness of the ith {0 the (i-l)th approximations, generally speaking
it is possible to make use of the method in which maximum values of moments are

. . =1 ‘
compared by assuming that M;n = Mgn at the point where M%n has its maximum
value. However, the convergence of such a process is not always satisfactory,
and in the general case this method does not lead to useful simplifications.
However, in a specific case for the blade with one degree of freedom in a pinned

joint, when M___ = MAaé(D, i.e. when weBp # 0, and when according to formula (27)

ax
= e MA
¢ 2B, _ , : - (88)
. -1 . o1
; i _ i _ 0 -1 it 0 :
by equating M, =M, =M, (or G, =, = ¢n) we obtain
M3 Pl — wdwl

from which

~ s Mo - k“.
An B i—1
. 2. (028 ( Q)A+BQ)+WA“
q2 ——— p"‘ — Q
J‘ i_ -‘: -
’ B w2 M?An ) (89)

Bpa+ @it

2
w2By
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By selecting the scale of moments to be such that Mgn = szg(i.e. @g.= -1),

we obtain a very simple formula

2 Boat B, -L‘If"_x _B .z.?l;""l %
'" Bpa+oit =i (90)
S Aﬂ%ﬁwwwﬁ
By introducing the found value pii and $; = -1 into equation (83) we can

determine the values of moments which must be further integrated'to the preceed-
ing forms (just‘as it is @one for moments of the initial approximation)_and nor-'
malized for the condition @i = ~1.

For the first frequency, when YAl << BwA’ §Al << BPA, calculations by for-
mula (90) generally converge rapidly. In calculating the subsequent forms, de-
spite thé simpliciﬁy of the method; its.practical application is difficult due
to loss of accuraéy in calculation of the denominator of the formula (90) which

is a small difference of large numbers.

~

The accuracy of calculation can be somewhat increased by determining QA

when ¢ = -1 directly from the expression

2

¥ G, = Qnaggfjl lS-/_g.c‘osadz)dzi‘ (o1)

3. For a nonrotating blade,when w = O we can find from the system (61) the

following

o gl euisl
ol ==
Tln

€182 — 8162

i-1 rri—1 :
R Pt Y T (92)
12— g2

Substituting values for*aén and agn into expressions (55) we. obtain /310

! MI —_— 2 &;o;_l =
m, pﬁ Q-1

Izn LA

(93).
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@A = @C =0, B¢l =B

Where

- B 0 — B, Byt 7, B,

=0 Gl L) (o)

0 it fallows Afrom (27) that M, = M, = O and,consequently,

Here when w " o

=0, B =B = Q.
@2 T TeE oz

Formula (59) takes on the following form (since bin = by = 0)

i (=i M7t + "M“‘) dz
a

Qo n
Pu= ol

a

(95)

i—17%i—1 + i—lg%i=1
( ek eyt dz

¢
'

[ ~z
ey T PR PN

4. TFor an idealized blade with rigid point hingé at point Ty (9 =0, Py = 0,

¢ = @) two boundary conditions’(2l)‘become a single condition M, =0, from which

04—, A
P23pA—°ﬂB - (96)

‘The first equation (1L) becomes

PR — P — 228 TA (g B,
ME p (DE W g 23;,,4_—-(023 (p w ) | (97)

The last equation applicable to weakly twisted blades and its solution by
the method of comparing maximum ordinates was considered by I. A. Birger (ref. L).
5. In calculation of the first form of vibrations normallx MZ << Mg, so that

=3, My,

[ T, = M= ——‘/~EI, (98)
Bl.‘ -

i.e., in the determination of‘the first}frequency'and corresponding iinear dis-

placements u and v it is possible to neglect the effect of torsional moments,

however the bending deformation is accompanied, just as for rigidly mounted

blades (ref. 3), by turning of cross sections,



| 1~—§i~ Gdz. (99)
the T

Let us also note that term Yz normally has secondary significance because
of relatively weak effects of céntrifugal forces on predoﬁinantly twisting [ﬁl;
forms of vibrations. |

6. Assuming in all equa¥ions that7¢l =@y = 0 we shall arrive at a system

of equations

/ Mm._pz Dpi-l— o1,
Mg (100)

when

’ pnlzv

In
h'*h""

v ' (101)

which describes vibrafions of a fwisted blade ‘rigidly mounted along the base
cfoss-section, considered edrlier in (refs. 2,%,5).

7. In calculation of the first form of vibrations of the blade with two
degfees of freedom in a pinned joint instead of a direct solution of a cubical
equation one can successfully solve the systems of equations (59) and (61) by
the method of successive approximations.

For the solution of this system,in the beginning one should assume that

. .‘-l . ._l
. | i _ 1 o ‘s 2 2
Oy = By, 2 Py = @, » determine quantities p . and q , from (59) and then from

this value of qii find more exact values of Ein and $;n from formulae (63) and‘
(64).

Then pii is recalculated from (59), half-sum of the initial and the more
exact values of p2 ,from which again angles are determined, etc. This process
convergés rapidly, as a rule, but calculations must be carried out with suffi-

cient accuracy.
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As @n example,several frequencies were calculated for the pinned blade de-
scribed in the work of S. M. Grinberg (ggf. 6), which appears in this collec-
tion, where the variation method for the solution of this problem is présented.

In calculating vibrations 6f the blade by the method of suécessive,approx—
imations the starting date must have:

a) geometrical characteristics: radii r,, rC, ro, length of the fin !

A m’
cross sectional parameters of the fin F(z), Jb(z)7 the angle of mounting of
amd

the cross sections a(z), characteristics of the tail section VHA’ SHA’ JHA’Adi'
mensions of the pinned joint p, 01> 05;

b) density of the material of the blade gﬂ;

c) vyield coefficients éll(z), 622(z), 612(2);

d) angular velocity of the rotor w.

It is convenient to conduct calculations in the following sequence: Tfirst
the second and the third forms of vibrations are determined when w = O, then in
sequence pendulum forms are calculated, .value w,, first, second and third forms
when w:,é 0.

Figures 5-8 show the .convergence process of solutions for.different calcu-
lation cases. In calculation of frequencies of a stationary blade for initial
function purposely known rough approximations were taken: in calculation of the

R 0] z 7 2 . . 0 .
second form (fig. 5) Mi. = (z -t )(1 - &==£0 )°, which yields M_.(t.) = O in-
. €2 0 in g2" 0

stead of the correct condition M, = 0. In calculation of the third form (fig. 6)

A
=z -1
MSB = l-—i?Z—JL . Despite this even in the first approximation the estimate of
“ .

the frequency is sufficiéntly accurate. Calculation of the first form when

w = 107 sec t was carried out by two methods--general (fig. 7) and the method

using condition MX = MX . In the first case the accurate frequency value is

obtained, naturally after a smaller number of approximations but the extent of

(%Y
F..l
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Figure 9. A comparison of frequency spectra of a pinned
blade with one 0-0 and two - *+ - degrees of freedonm ip
the hinge and of a corresponding rigidly mounted blade — — —;
I, II, III are numbers of the forms of vibrations; M is the

"pendulum" form.

each approximation increases. For the given blade the critical velocity

Wy = o.18h-1o6 sec_l, so that when w = lO3 sec-l the flexibility parameter

v = 5.45 and coefficient ¢ = 0.845. 1In view of such a large flexibility of the
bladeyto obtain a satisfactory convergence along the projection of moments sev-
eral approximations are required. The convergence of the solution of the second

form of vibrations is shown. in Figure 8.

The order of design of the blade with two degrees of freedom in the pinned

2

joint is in general the same as shown above,with the exception that P . and

)
oy . $} mist be determined by somewhat different methods.

tin-© £n 3)4‘




A.coméarison of the frequency spectra of a pinned blade with one and with
two degrees of freedom in the pinned joint and a corresponding rigidly mountéd
blade (calculated on an electronic digital computer M20 according to reference
2) is shown in figure 9. The projections of dynamic bending, curvature and
other characteristics of the pinned blades are shown in reference 6, where com-
parisons are made of the results calculated by the iteration and variation

methods.

REFERENCES [315
1. Grinberg, S. M. and Shorr, B. F. On the Theory of Vibrations of Pinned
(K teovri; ko‘ekmniy S‘ﬂo.\'h?'rh\/\(\\ (oeo—'tok s o‘okm{yvmhiycm),
Blades Upon RollingA(Raschety na prochnost') Designsfor Strength , No.
10, State Machine-Building Publishing House, 196k.
2. Shorr, B. F. Bending and Torsional Vibrations of Twisted Compressor anes
(Izgibno-krutil'nyye kolebaniys zakruchennykh kompressornykh lopatok)
(Collection:Prochnost' i dinamika aviatsionnykh dvigateley)
(Strength and Dynamics of Aircraft Engines), No. 1, Publishing House
"Mashinostroyeniye," 196L4.
' (Kolebaniya zsakruchennykh sterzhney)
3. =-- Vibration of Twisted Rods, Izvestiya OIN AN SSSR. Mechanika i Mashin-
ostroyeniye (News of the Department of Technical Sciences of the Academy
of Sciences of the USSR. Mechanics and Machine Building), No. 3, 1961.
4. Birger, I. A. Mathematical Methods for Solving Engineering Problems
(Nekotoryye matematicheskiye metody resheniya inzhenernykh zadach) . Okurohjiz
" (State Defense Publishing House), 1956.
5. Grinberg, S. M. Calculation of Frequencies of Bending and Torsional Vi-
: Designs for Strengtih
brations of Compressor Vanes. Collection: (Raschety na prochnost'),

Mn.‘.i"\ iz
No. 9, (State Machine-Building Publishing House) 1963.

35



NASA TT F-10,273

6. Grinberg, S. M. Variational Method for Calculation of Frequencies and Types

of Vibrations of Pinned Blades. .Collection: Prochnost' 1 dinamika avi-
| atsionnykh dvigateley, No. 2, Publishing House "Mashinostroyeniye," 1965.
T. Scarboro, G. Num_erical Methods of Matheﬁatical Anaiysis (Chislennyye
metody matematicheskogo analiza). State Publishing House of Technical and

Theoretical Literature, 193k.

36



